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Abstract—The grasping of transparent objects is challenging
but of significance to robots. In this article, a visual-tactile
fusion framework for transparent object grasping in complex
backgrounds is proposed, which synergizes the advantages of
vision and touch, and greatly improves the grasping efficiency
of transparent objects. First, we propose a multi-scene synthetic
grasping dataset named SimTrans12K together with a Gaussian-
Mask annotation method. Next, based on the TaTa gripper, we
propose a grasping network named transparent object grasping
convolutional neural network (TGCNN) for grasping position de-
tection, which shows good performance in both synthetic and real
scenes. Inspired by human grasping, a tactile calibration method
and a visual-tactile fusion classification method are designed,
which improve the grasping success rate by 36.7% compared
to direct grasping and the classification accuracy by 39.1%.
Furthermore, the Tactile Height Sensing (THS) module and the
Tactile Position Exploration (TPE) module are added to solve
the problem of grasping transparent objects in irregular and
visually undetectable scenes. Experimental results demonstrate
the validity of the framework.

Index Terms—Transparent object grasping, complex back-
grounds, synthetic transparent object dataset, tactile calibration,
visual-tactile fusion.

I. INTRODUCTION

Transparent objects are common in people’s daily life, but
it is very challenging for robots to accurately detect and grasp
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Fig. 1. The visual-tactile fusion framework inspired by human grasping.

them. This is mainly because the appearance of transparent
objects changes drastically under different backgrounds, mak-
ing traditional visual detection prone to failure. Therefore, how
to realize accurate and robust detection of transparent objects
towards efficient grasp has attracted tremendous interest in
the field of robotics. Representative works include the multi-
modal transfer learning method [1], the plenoptic sensing
approach [2], the transparent depth information complimenting
method [3], etc. Nevertheless, these methods usually focus on
the detection of transparent objects and assume the objects are
placed in static backgrounds with simple patterns, which is not
always the case in practice. Hence, it is of great significance
to develop a grasping method for transparent objects that
can adapt to various backgrounds, e.g., the objects placed on
soft or fluid surfaces, with complex patterns or unpredictable
conditions, such as undulating scenes, underwater, and so on.

Thanks to the development of computer vision and deep
learning, vision-assisted perception has now become a popular
and effective choice for robot interactions and environment
explorations. However, the vision-based method cannot work
well in dim, reflective, and cloudy conditions. Inspired by the
grasping behavior of humans shown in Fig. 1, where visual
and tactile sensation are collaboratively working towards com-
plicated tasks, a visual-tactile fusion-based framework using
the TaTa gripper [4] is proposed in this paper for transparent
object grasping in complex backgrounds. Here the tactile
sensation is utilized to compensate for the limitation of vision,
which not only largely raises the success rate of grasping by
36.7% but also greatly improves the classification accuracy of
transparent objects by 39.1%. In addition, the framework can
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be extended to cover more challenging scenes such as irregular
backgrounds or even visually undetectable scenes. Specifically,
the contributions of this work are fourfold:

• Firstly, a synthetic transparent object dataset named
SimTrans12K is proposed containing different styles of
backgrounds, lighting, and camera positions, which has
more complex and abundant background information
than the previous transparent object datasets, such as
ClearGrasp [3] and Dex-Nerf [5]. Besides, to improve
the performance of Sim2Real, we propose a Gaussian-
Mask method for transparent object grasping position
annotation, which can better represent the position in-
formation of transparent objects than the binary ground
truth grasping position [1].

• Secondly, for the TaTa gripper [4], a generative grasping
network named transparent object grasping convolutional
neural network (TGCNN) is proposed, which can achieve
transparent object grasping position detection in complex
backgrounds and lighting with training from the synthetic
dataset only. Meanwhile, a tactile information extraction
algorithm and a visual-tactile fusion-based transparent ob-
ject classification algorithm are developed to compensate
for the visual deviation [6].

• Thirdly, to realize transparent object grasping in com-
plex backgrounds, we propose a visual-tactile fusion-
based transparent object grasping framework with tactile
calibration. Besides, we add the Tactile Height Sensing
(THS) module and the Tactile Position Exploration (TPE)
module to this framework, which can achieve transparent
object grasping in stacking, overlapping, or even visually
undetectable scenes. Those scenes are extremely difficult
and there are only a few studies before [3], [5], [7]–[9].

• Finally, to test the effectiveness of the proposed frame-
work, we carefully design several experiments to exten-
sively compare the performance with several state-of-
the-art baseline methods, which indicates the proposed
method has a considerable performance improvement for
transparent object grasping and classification. Moreover,
we also test the proposed method in some highly difficult
scenes such as stacking, overlapping, undulating, and
dynamic underwater environments, which greatly extends
the application areas of transparent object grasping.

The rest of this paper is organized as follows. The re-
lated work is reviewed in Section II. The hardware setup
is detailed in Section III. Section IV presents the synthetic
data generation, the grasping position detection algorithm, the
tactile information extraction algorithm, and the visual-tactile
fusion-based classification algorithm. The proposed visual-
tactile fusion grasping strategy is presented in Section V.
Furthermore, experimental validations are provided in Section
VI. Finally, Section VII concludes this paper.

II. RELATED WORK

A. Transparent Object Dataset

Xie et al. proposed a transparent dataset Trans10K with
10,428 real data [10], but it only has two limited categories,
which was further refined to 11 fine-grained categories of

Fig. 2. Examples of transparent object dataset. (A) ClearGrasp [3]. (B) Dex-
NeRF [5]. (C) LIT [13]. (D) Light Field Camera used in LIT dataset.

transparent objects in the dataset Trans10K-v2 [11]. Jiang
et al. constructed a real-world dataset TRANS-AFF with
affordances and depth maps of transparent objects [12].

With the development of powerful computer graphics simu-
lation tools, researchers have tried to generate the synthetic
dataset of the transparent object from simulation consider-
ing its low cost, simplicity, and efficiency. Representative
works include ClearGrasp [3], a synthetic dataset for depth-
completion tasks, Dex-NeRF [5], a synthetic dataset for trans-
parent object detection and localization, and LIT [13], a
synthetic dataset for light-field cameras, as shown in Fig. 2.

The implementation of transparent object grasping via
Sim2Real puts higher demands on the diversity and validity
of the dataset, so we hope that the dataset contains more
transparent object data under complex backgrounds and light-
ness, while ClearGrasp and Dex-NeRF can hardly meet such
requirements. Although LIT contains more complex scenes,
it contains scenes with low brightness and is designed for
light field cameras, as shown in Fig. 2(D). A new synthetic
dataset for the transparent object is proposed in this paper. To
reduce the discrepancy between the synthetic data and the real
scene, we carefully calibrate the parameters of the cameras,
lights, and backgrounds in the simulation software to make
them as consistent as possible with the real camera, which is
neglected in the existing transparent object synthetic dataset. In
addition, we also propose a Gaussian-Mask annotation method
for transparent objects.

B. Transparent Object Detection

The visual detection methods of transparent objects can
be divided into two types: physical feature-based detection
methods and deep learning-based methods.

Traditional methods detect transparent objects based on
physical features such as deformation, reflection, and image
gradient changes. Fritz et al. reported an additive latent feature
model through the assumption that the texture of transparent
objects originates from the background [14]. McHenry et
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al. proposed a hierarchical support vector machine (SVM)-
based glass edge recognition model via the background texture
distortion and reflection phenomenon at the glass edge [15].
Maeno et al. used a light field camera to acquire images and
utilized a light field distortion feature (LDF) to describe the
distortion caused by the refraction of transparent objects [16].

The development of deep learning paves a new way for
transparent object detection. Liu et al. used a convolu-
tional neural network called Single Shot MultiBox Detec-
tor (SSD) for transparent object detection [17]. Xie et al.
proposed a Transformer-based segmentation pipeline termed
Trans2Seg [10]. Fan et al. applied the transparent object
detection to highly dynamic scenes and proposed a recognition
tracking network named TransATOM, which can stably track
the transparent objects in video [18]. Xu et al. proposed a joint
point cloud and depth completion method, which can complete
the depth of transparent objects in cluttered scenes [19]. Zhu
et al. presented a novel framework that can complete missing
depth given noisy RGB-D inputs [20].

Deep learning methods have demonstrated superior robust-
ness to traditional ones, especially for transparent object detec-
tion in complex scenarios, showing great application potential.

C. Transparent Object Grasping

Transparent object grasping is another challenging task.
Apart from the object position, the optimal grasping position
and angle should be considered as well during grasping. We
classify transparent object grasping tasks into different levels
of difficulty as shown in Table I, ranging from the simple
case of grasping on a plane to the extremely difficult case of
grasping in dynamic underwater environments.

For transparent object grasping, most of the work is per-
formed on planes with a simple background. For example,
Weng et al. proposed a multi-modal transfer learning method
for transparent and reflective object grasping [1]. Sajjan et
al. reported a transparent depth completion method to grasp
transparent objects [3]. Liu et al. proposed a keypoint-based
method for 6D pose estimation of objects using stereo image
input, which can be easily applied to transparent object grasp-
ing [21]. Ichnowski et al. rendered depth maps of transparent
objects using neural radiation fields (NeRF) to infer the ge-
ometry of transparent objects and perform plane grasping [5].
Kerr et al. proposed Evolving NeRF (Evo-NeRF), leveraging
recent speedups in NeRF training and further extending it to
rapidly train the NeRF representation concurrently to image
capturing [22]. Cao et al. proposed a fuzzy-depth soft grasping
(FSG) algorithm for Tstone-Soft (TSS) gripper [23].

Besides, grasping transparent objects in complex scenes,
e.g., glass fragments, stacking, overlapping, undulating, sand
and underwater scenes are more challenging but of practical
meaning. Firstly, glass fragments are a type of object with no
fixed model, and their detection and grasping pose a significant
challenge. Because of its random shape and the presence of
more angles, the accuracy of grasping and the universality
of grasping tools are highly required, so there is almost no
research on the grasping of transparent glass fragments. For
overlapping and stacking transparent objects, their texture will

be merged with the background, so it is difficult to distinguish
them. Zhou et al. proposed a GlassLoc algorithm for grasping
pose detection of transparent objects in clutter using plenoptic
sensing, which achieves transparent object grasping in stacking
scenes though the experimental setting is simple [2]. Lysenkov
et al. proposed a method that can achieve pose estimation for
cluttered transparent objects in complex backgrounds, but it
applies the pose matching method which is only applicable to
objects within the dataset [24] and cannot solve the grasping
of transparent fragments without regular shapes.

Secondly, object grasping on undulating planes is difficult
with RGB cameras because it is hard to estimate the height
where the object is placed. As shown in Fig. 3, even by incor-
porating depth cameras, such a problem cannot be well solved
for transparent object grasping. The reason is mainly bifold:
on the one hand, the depth information for transparent objects
is inaccurate, and on the other hand, undulating scenes have
some shadows, overlaps, and reflective areas, which raises
more challenges for transparent object detection. Therefore,
the lack of accurate information about transparent objects and
the interference of the environmental background is a difficult
problem to solve, which is one of the reasons why we use
RGB images rather than depth images to achieve transparent
grasping position detection in complex backgrounds. Sand is
a special undulating scene. In addition to the above problems,
its surface is more uneven, where sand particles of different
colors will also influence the detection, and sand is also easy
to slide during the grasping process. To our knowledge, there
is still a lack of studies or experiments for transparent object
grasping on undulating scenes or sand environments.

Fig. 3. Detection with RGB and depth cameras. Left: undulating scenes: RGB
(A) and Depth (B) images; Right: underwater scenes: RGB (A) and Depth
(B) images.

Thirdly, transparent object grasping in underwater scenes
is also challenging due to the similar optical properties of
water and transparent objects. As shown in Fig. 3, even with
a depth camera, transparent objects are still undetectable in
water, and there are many reflections on the surface of the
water under the illumination of light, making things worse. To
solve the problem of underwater transparent object detection,
Zhou et al. proposed the Plenoptic Monte Carlo Localization
(PMCL) method for localizing the pose of a translucent object
underwater using a Lytro first-generation light field camera
[26]. Similarly, Oberlin et al. proposed a formal model for
robotic light-field photography [25], which can turn a cali-
brated eye-in-hand camera into a time-lapse light-field camera.
Although this method can be deployed on conventional cam-
eras, thousands of RGB images from different angles need
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Fig. 4. Hardware system. (A) The structure of TaTa: (a) The schematic diagram of TaTa, (b) The layout of the inside LEDs, (c) The illustration of the inside
light path. (B) Coordinate system (CS). (C) Visual-tactile fusion grasping experimental platform. (D) Tactile perception effect test: (a) Screwdriver picture,
(b) Perception result. (E) Grasping performance testing: (a) Grasp an egg, (b) Grasp a tomato.

TABLE I
RELATED WORK ON TRANSPARENT OBJECT GRASPING

Scenes Difficulty Related Work

Plane Normal

Weng et al. [1], Sajjan et al. [3],
Liu et al. [21], Ichnowski et al. [5],

Kerr et al. [22], Cao et al. [23],
Jiang et al. [12], Zhou et al. [13]

Fragments
grasping

Medium
N/A

Stacking &
Overlapping Zhou et al. [2], Lysenkov et al. [24]

Undulating
High

N/A
Sand N/A

Underwater Oberlin et al. [25], Zhou et al. [26]
Highly dynamic

underwater
Very high N/A

to be captured for one detection. Furthermore, these methods
have not been studied for some dynamic underwater scenes
with bubbles, waves, reflections, and complex backgrounds,
which are extremely difficult, and even using a light field
camera may probably fail.

In summary, most existing studies focus on grasping trans-
parent objects with known shape in simple scenes such as on a

plane, while several difficult scenes listed in Table I are rarely
studied and still remain an open problem.

III. HARDWARE SETUP

The human hand has sensitive tactile perception because its
surface is covered with dense tactile nerves [27]. Similarly,
various tactile sensors have been designed for robots, such
as piezoelectric [28], capacitive [29], triboelectric [30], and
piezoresistive sensors [31], but the resolution is still not
comparable to human hands. Thanks to the commercialization
and miniaturization of the CMOS image sensors, a series of
tactile detection devices based on optical imaging are invented
and realize high-resolution sensing with low costs, e.g., Gel-
Sight [32], GelSlim [33], and FingerVision [34]. However,
such devices are mainly designed for fingertips and cannot
acquire the overall contour of the contacted object. In addition,
they usually adopted a silicone plus transparent acrylic sheet
solution which has limited deformation capability.

To realize transparent object grasping, a universal soft
gripper named TaTa is adopted here, as shown in Fig. 4(A)(D),
which has tactile perception on a large hemispherical surface.
Details of the TaTa gripper can be found in our previous
paper [4]. Meanwhile, we upgrade the previous version of
the TaTa gripper by using the camera with a larger imaging
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range and improving the waterproof ability to achieve better
detection performance and durability. TaTa adopts the grasping
principle of particle jamming and vision-based tactile detection
technology, using the principle of refractive index matching to
design a special solid-liquid mixture that looks totally trans-
parent [35], overcoming the interference of internal particles
on the internal camera. Hence, it has large-area, high-quality
tactile detection ability as well as adaptive grasping ability.

The hardware setup is depicted in Fig. 4(B)(C). A RealSense
D435i camera is fixed on the top frame as the “eye”, which
can acquire 480×640 image information and the TaTa gripper
is attached to the UR5 robotic arm. Two LEDs are used to
provide lighting to the platform. We divide the system into
five coordinate systems and use the center of the gripping
plane as the origin of the world coordinate system O1. Firstly,
we calibrate the intrinsics and extrinsics of the eye camera
with a checkerboard [36] to establish the relationship between
the camera coordinate system O3 and the world coordinate
system O1. Secondly, since the robot arm and the gripping
plane are at the same height, the relationship between the arm
base coordinate system O2 and the world coordinate system O1
is derived by coordinate transformation. Thirdly, the position
of the end of the gripper in O2 can be obtained through the
official program interface of the UR5 robot arm so that the
arm can be controlled to reach the location of the transparent
object captured by the eye camera. Finally, taking the gripper
center as the origin and establishing the relationship between
the tactile camera coordinate system O5 of the tactile sensor
and the coordinate system O4 of the gripper end, so we can get
the offset of the position where the contact between the gripper
and the object occurs relative to the origin of the gripper, after
which the offset is mapped to the displacement of the end of
the arm to achieve tactile calibration.

To verify the capability of handling fragile objects, tests on
grasping an egg and a tomato with TaTa are conducted, as
shown in Fig.4(E). Meanwhile, we upgrade the problem of
the small imaging range of the previous version of the TaTa
gripper by using the camera with a larger imaging range and
improving the waterproof ability to achieve better detection
performance and durability.

IV. METHODOLOGY

This section introduces the algorithms used in our proposed
visual-tactile fusion grasping framework. As shown in Fig. 5,
to achieve transparent object grasping, we propose a trans-
parent object grasping position detection algorithm, a tactile
information extraction algorithm, and a visual-tactile fusion
classification algorithm, respectively. Besides, a Gaussian-
Mask annotation method is also developed for our synthesized
transparent object dataset.

A. Dataset Generation and Annotation

The neural network-based grasping position detection
method requires a large dataset, and hence it is challenging to
collect and annotate datasets manually. To tackle this problem,
we adopt Blender to make a multi-background transparent
object grasping dataset, SimTrans12K, which contains 12,000

synthetic images and 160 real images, as illustrated in Fig. 6.
The reason to choose Blender is due to its high flexibility and
capability to simulate the key features of transparent objects,
such as surface reflections, refraction, and soft shadows.

SimTrans12K contains 6 types of objects and 2,000 dif-
ferent scenes. To obtain sufficiently complex and adequate
backgrounds, we cropped some images from videos containing
rich home decoration layouts and landscapes as backgrounds.
The scene setup for generating the transparent object syn-
thetic dataset is shown in Fig. 6(A). We use Blender 2.90’s
physically-based Cycles renderer with path tracing set to 256
samples pixel, and max light path bounces set to 1024. For
glass materials, we set the index of refraction to 1.45 to match
the physical glass. In each scene, two light sources are used
to illuminate the location of the object and generate reflection
spots on the surface of the object. The maximum power of the
light is 1000 W and the minimum power is 100 W. A camera
is placed above the transparent object, and the acute angle
between the camera’s optical axis and the z-axis of the world
coordinate is varied in the range [0,π/24]. Camera intrinsics
are set the same as the RealSense D435i camera.

Based on the information obtained during rendering, ground
truth labels are generated for training. Generative models
such as the Generative Grasping CNN (GGCNN) [37] rely
on the same binary ground truth generation during training.
However, binary ground truth labels treat the edge and the
center of annotation with the same weight, which is easy to
make the grasping position deviate from the optimal center
and come to the edge of the object. It can lead to a declined
grasping success rate and even damage the object. To improve
the reliability of dataset annotation, we propose a transparent
object grasping position annotation method based on Gaus-
sian distribution and the transparent object mask (Gaussian-
Mask). Previously, Hu et al. proposed the idea of using
Gaussian distribution for object grasping position annotation.
A Gaussian distribution rectangular box was adopted for the
annotation of the gripping position, which works well for
ordinary objects [38]. However, the grasping position detection
of transparent objects is much more challenging since the
texture of transparent objects changes with the backgrounds.
Fortunately, although the texture properties of transparent
objects may change dramatically, their boundary information is
relatively stable [10]. Therefore, instead of using rectangular
box annotation, we directly use the mask of the transparent
object itself as the grasping contour and use Gaussian distri-
bution to represent the optimal grasping position, which makes
full use of the boundary information of the transparent object.

For the TaTa gripper, which achieves gripping by wrapping
the whole object, we can use the center of the transparent
object as the optimal grasping position. To make the grasping
position as close as possible to the object center, a grasping
quality distribution map that satisfies a Gaussian distribution
from the center of the annotated object is generated. In this
way, the point near the object center has a higher grasping
quality than the point away from the center, so it is easier for
the gripper to select the object center for grasping. Positioning
in the object center helps TaTa for better tactile detection and
also reduces the probability of potential damage to the object
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Fig. 5. The visual-tactile fusion framework for transparent object grasping. (A) Grasping position detection. (B) Tactile information extraction. (C) Visual-
tactile fusion classification.

Fig. 6. SimTrans12K Dataset. (A) Scene setup for generating the transparent object synthetic dataset using Blender. (B) Synthetic dataset of transparent
objects in different backgrounds. (C) The real dataset in different backgrounds. (D) The real dataset in different brightnesses.

during grasping. To make the Gaussian-Mask annotation adapt
to different objects and camera positions in the scene, the
two farthest points on the object on the same x − y plane
are selected. Then the two points are projected onto the
rendered image. The center of the line connecting the two
points is chosen as the center of the Gaussian distribution,
and half the distance between the two points is determined as
the Gaussian distribution radius. However, the Gaussian-Mask
annotation method also has some limitations. This method
uses the object’s mask as the annotation frame and is more
suitable for objects whose center is located on the object. The
Gaussian-Mask annotation process is shown in Fig. 7. The
object center, Gaussian distribution radius, and Gaussian-Mask
labels are obtained directly from the RGB image, which is

Fig. 7. Gaussian-Mask annotation process of transparent objects.

further processed to obtain the Gaussian representation ground
truth labels. Thanks to the Gaussian-Mask annotation, the
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Fig. 8. The network architecture of the proposed TGCNN.

grasping network could regress to a more accurate grasping
center.

B. Transparent Object Grasping Position Detection

Due to the unique optical properties, the appearance of
transparent objects is easily disturbed by the backgrounds.
In many cases, it is difficult for even humans to directly
distinguish the types of transparent objects under different
backgrounds, which makes the classification and grasping of
transparent objects by vision difficult. Therefore, we adopt
the generative grasping model, which can directly generate
the grasping positions from images without recognition and
classification. The model is expected to learn the general
properties of transparent objects and then apply them to detect
and grasp unseen transparent objects in complex backgrounds.

(a) Network Architecture: Fig. 8 shows the proposed
TGCNN model, which is a generative architecture taking in
a 3-channel RGB image and generating pixel-wise grasps in
the form of two images. The 3-channel RGB image is passed
through convolutional layers, residual layers, and convolution
transpose layers to generate two images. Each residual layer
contains two convolutional layers, two batch normalization
layers, and a shortcut connection. At the same time, the skip
connections in the network enable the network to obtain more
hierarchical information fusion, which makes the network
more effectively combine scene information to detect transpar-
ent objects. TGCNN has 2,145,154 parameters with a trained
model size of 8.23 MB. The output image of the network
includes grasping quality and grasping radius, and these two
parameters can guide the grasping for the TaTa gripper.

(b) Grasp Definition: A grasp perpendicular to the x-y
plane is defined as gr = (p,r). The grasp is described by the
projection of the center position of the gripper p : (x,y) onto
the x-y plane and the height h between the gripper center and
the x-y plane in Cartesian coordinates. Since the shape of the
gripper is hemispherical, the flexibility of the gripper enables
it to be deformed. For the same gripper and object, the lower
the gripper center from the x− y plane after contact with the

Fig. 9. The influence of different grasping radius r on detection.

object, the more the gripper is compressed and the larger the
contact area between the gripper and the object will be.

Since the contact surface is similar to a circle, the index
grasping radius r was used to describe the contact area sizes
caused by different heights h of the gripper. The influence of
different grasping radius r on detection is shown in Fig. 9.
A scalar quality measure q, representing the chances of grasp
success, is added to the pose. To further improve the grasping
efficiency of the gripper, an adaptive height-dropping method
(AHD) is proposed. AHD can determine the distance between
the gripper and the detection surface according to the size
of the object. We use a small drop height for small objects
and use a larger drop height for large objects. Because for
small objects, a smaller drop height can make the gripper
obtain complete tactile detection information. While for a
large object, a larger drop height can obtain a more complete
tactile image of the object. The generated grasping radius is
smaller when the object detection uncertainty is large, which
ensures a balance between safety and detection efficiency
when detecting in highly uncertain environments.

Assume we want to detect grasps through an RGB image
P ∈ Rm×n×3, with known camera intrinsic parameters. In the
image coordinate system, a grasp is described by

gi = (s,ri,q), (1)

where s = (u,v) is the centre and ri is the grasping radius
in image coordinates. In order to perform the grasp in image
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Fig. 10. Visual-tactile fusion classification dataset. (A) Tactile data, FCN feature extraction, and center point detection results. (B) Visual classification dataset.

space on the robot, we can convert the image coordinates to
the robot’s frame of reference by the following transformation:

gr = ξRC(ξCI(gi)), (2)

where ξRC is a transformation from the camera frame to
the world frame and ξCI is a transformation from 2D image
coordinates to the 3D camera frame.

The above notation can represent multiple grasps in an
image. The collective group of all grasps can be denoted as

G = (R,Q) ∈ Rm×n×2, (3)

where R and Q ∈ Rm×n contain values of grasping radius ri
and quality measure q respectively at each pixel s.

Grasp candidates gi are wanted to create directly by calcu-
lating the RGB images, so a mapping φ from RGB images to
grasp map in the image coordinates was defined: φ(P) = G.
From G the best visible grasp in the image space g∗i = max

Q
G

can be calculated, and the equivalent best grasp in world
coordinates g∗r can be obtained as well. For the case of multiple
objects in the same scene, we will sort the visible grasps
according to the quality measure q, and select the first k visible
grasps (k is manually specified).

Huber loss is used for network training, written as:

L
(
Gi,Ĝi

)
=

{
0.5(∥Gi − Ĝi∥F)

2, if ∥Gi − Ĝi∥1 < 1
∥Gi − Ĝi∥1,1 −0.5, otherwise

(4)

Here, Gi denotes the grasp candidate which can be generated
by the network, and Ĝi is the ground truth grasp. ∥ · ∥F and
∥ · ∥1,1 represent the Frobenius and “Entry-wise” L1 matrix
norms, respectively.

C. Tactile Information Extraction Algorithm

To obtain the contact information between the gripper and
the object, we extract the contour of the contact area using
Fully Convolutional Networks (FCN). Compared with the
frame difference method [39] and optical flow method [40],

Fig. 11. Visual-tactile fusion classification framework for transparent objects.

the FCN-based tactile feature extraction algorithm has stronger
robustness and can still obtain clear contact information even
if the internal optics of the sensor is changed. We acquired 160
images of the object in contact with the gripper as a training
set and annotated the data at the pixel level, and some results
are illustrated in Fig. 10(A). After 60 rounds of training, the
segmentation accuracy achieves 98%.

D. Visual-tactile Fusion Classification

Transparent objects have little visual information and the
surface pattern changes with the backgrounds as well as the
lighting conditions, making it difficult to classify by vision
only. To solve this problem, a vision-tactile fusion method for
transparent object classification is proposed, where RGB and
tactile images are concatenated together for classification using
GoogleNet, as depicted in Fig. 11. We collected 1,200 data of
6 objects with different backgrounds such as reflections, pat-
terns, colors, overlapping, and stacking scenes as the training
set and 600 data as the test set, as shown in Fig. 10(B).

To test the performance of the algorithm, we compare
the visual classification and visual-tactile fusion classification
algorithms. The visual classification accuracy is 59.3%, while
the visual-tactile fusion classification accuracy reaches 98.4%,
which increases the classification success rate by 39.1%.
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Fig. 12. Human grasping strategies in different scenes (The black curve
indicates the movement path of the hand). (A) Grasping objects in clear view.
(B) Grasping transparent objects underwater. (C) Grasping objects in visually
undetectable scenes.

Fig. 13. Grasping strategies in different scenes. The orange, blue, and green
colors represent the functions of visual detection, tactile, and visual-tactile
fusion, respectively. The framework can be adapted to different scenes by
adjusting the grasping strategies.

V. GRASPING STRATEGY

Based on the algorithms proposed in the previous section,
this section explains how to integrate them to accomplish
transparent object grasping in different scenes, which forms
the high-level grasping strategy for our visual-tactile fusion
framework. We decompose a grasping task into three sub-
tasks, i.e., object classification, grasping position determina-
tion, and grasping height determination. Each sub-task can
be conducted by vision, touch, or fusion. Similar to humans,
when vision can directly obtain the precise position of the
object, we can control the hand to directly reach the object and
complete the grasp, as shown in Fig. 12(A). When the vision
can not accurately obtain the object’s position information,
we will use the tactile perception of the hand to slowly
adjust the grasping position after obtaining the object’s general
position information until it touches the object and reaches
the appropriate grasping position, as shown in Fig. 12(B).
For object grasping in visually limited situations, as shown
in Fig. 12(C), we will use the hand’s rich tactile nerve to
search for the position of the object in a wide range, which
obviously wastes more time but is an effective way to solve
the object grasping in these special scenes.

Inspired by human grasping strategies, we divide transpar-
ent object-grasping tasks into three types: planes with com-
plex backgrounds, irregular scenes, and visually undetectable
scenes, as shown in Fig. 13. In the first type where vision
is very effective and plays a key role, we use vision-first
grasp. In the second type where vision and touch can work

Fig. 14. Flowchart of transparent object grasping on a plane with complex
backgrounds.

Fig. 15. Tactile calibration grasping process. Firstly, the gripper touches the
object, the center of the object outline does not appear in the gripper center,
and the displacement between the object and the gripper is calculated as
d : (x,y). Secondly, lift the gripper. Thirdly, move the gripper with a distance of
d. Fourthly, the gripper touches the object again. If the object center coincides
with the gripper center, then calibration is completed.

synergistically, we use vision-tactile grasp. While in the last
type where vision may fail and touch becomes dominant in
the task, we use touch-first grasp. Details of the three grasping
strategies are introduced below.

A. Planes with Complex Backgrounds – Vision-First Grasp

Grasping objects on a plane can be achieved by visual
detection [41], [42], but the texture information of transparent
objects changes with the background, so grasping transparent
objects in complex backgrounds is challenging even on a
plane. To tackle this, we propose a strategy for transparent ob-
ject grasping with visual-tactile fusion, as depicted in Fig. 14,
which mainly includes three steps.

(a) Use TGCNN to obtain the grasping position and height
of the transparent object as the target position and control the
gripper to reach the target position.

(b) Use tactile information to check if the gripper contacts
the object. If not, mark it as a wrong detection point and
proceed to the next position. If yes, the tactile information will
be applied to further adjust the gripping position. Here, to get a
more precise grasping position, we propose a tactile calibration
method, as illustrated in Fig. 15. The method first uses a
tactile information feature extraction network to segment the
contact area [43], which has been introduced in section IV.
Then, use the minimum outer circle detection algorithm to
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Fig. 16. Transparent object grasping process: (A) In irregular scenes, (B) In
visually undetectable scenes.

obtain the circle center of the contact area, calculate the
position relationship between the gripper center z : (x,y) and
the minimum outer circle center t : (x,y) obtained by the tactile
feature extraction d = z− t, and control the gripper to move
the distance of d. During this stage, the tactile calibration
algorithm will continue running until the object locates in the
gripper center.

(c) Use the visual-tactile fusion framework to classify and
place the object at a given place. Finally, the area is marked
as detected and will not be revisited. The use of the grasping
position marker prevents invalid revisiting especially when
there are many interference areas in visual detection results.

B. Irregular Scenes – Vision-Touch Grasp

Compared to grasping objects on planes, it is more chal-
lenging to grasp transparent objects in irregular scenes, such as
overlapping, stacking, and undulating scenes. For stacking and
overlapping scenes, it is difficult to separate two objects with
similar textures by RGB vision detection either for transparent
or non-transparent objects. And for undulating surfaces, it is
difficult to obtain the precise grasping height of the object
simply by using an RGB camera.

So we add the THS module which uses tactile sensing to
adjust the grasp height. The implementation process is shown
in Fig. 16(A). First, we still use TGCNN to get the grasping
position of the transparent object, but the height of the object
cannot be determined. Therefore, when the gripper reaches
the specified position, the THS module will be activated.
The gripper is controlled to keep exploring downward until
it touches the object or reaches the lowest point, and then
complete grasping the object through tactile calibration. The
THS module not only enables the grasping of objects in
undulating scenes but also solves the problem of grasping
transparent objects in overlapping and stacking scenes.

C. Visually Undetectable Scenes – Touch-First Grasp

Although vision is a powerful detection method, it may fail
in some scenes, such as transparent object detection in highly
dynamic underwater scenes. Because water and transparent
objects have similar optical properties, the water flow and
ripples will result in difficulties to detect the grasping position
by vision. For transparent objects, we define scenes such as

highly dynamic underwater, darkness, and smoke as visually
undetectable scenes.

To achieve grasping in visually undetectable scenes, we
add a TPE module as introduced in the previous section. The
implementation process is shown in Fig. 16(B). Firstly, it uses
touch to search for the transparent object in a specific range.
When in contact with the object, it uses THS to determine
the grasping height and tactile calibration to determine the
grasping position. Finally, it applies visual-tactile fusion for
classification. Therefore, when vision is not effective, we can
use touch to obtain both the grasping height and position, like
human grasping in the dark. The advantage of this method is
that object grasping can still be achieved even without vision,
while the disadvantage is that it is inefficient and may fail to
find the object when the exploration area is too large.

VI. EXPERIMENTS

This section presents the experimental results of the pro-
posed algorithms and visual-tactile fusion grasping framework.
Firstly, to test the effectiveness of our proposed transparent
object dataset, the annotation method, and the grasping po-
sition detection network, we conduct synthetic data detection
experiments (Exp. 1) and transparent object grasping position
detection experiments under different backgrounds (Exp. 2)
and brightness (Exp. 3). Secondly, to verify the effectiveness
of the visual-tactile fusion grasping framework, transparent
object classification grasping experiments (Exp. 4) and trans-
parent fragment grasping experiments (Exp. 5) are designed.
Thirdly, we design transparent object grasping experiments in
irregular (Exp. 6) and visually undetectable scenes (Exp. 7) to
test the effectiveness of the framework after adding the THS
module and the TPE module. The failed trials and limitations
are provided and discussed as well.

A. Exp. 1: Object Detection with Synthetic Data

To evaluate the performance of the TGCNN algorithm, we
apply the index of grasping overlap degree (GOD) to measure
if a detection is successful, similar to Saxena et al. [44] and
Jiang et al. [45]. If a calculated grasp circle and the label
mask share an intersection (i.e., the GOD) greater than 45%,
a detection is considered to be correct.

Most of the current research on transparent object grasping
such as ClearGrasp, Dex-NerF, and LIT is based on depth
complementation and pose estimation of RGB-D information,
which cannot be directly compared to our algorithms that are
based on RGB data. To make a comparison, we consider the
currently more mainstream generative grasp networks such as
GGCNN [37], Redmon [46], and GI-NNET [47]. Since most
of these networks are designed for parallel two-finger grippers
based on RGB-D input, modifications are needed to enable
them to operate on our proposed dataset—we change the input
data to RGB and change their output from the width and angle
to the radius.

In the experiments, we evaluate TGCNN from multiple
aspects: (a) Image-wise evaluation with unseen backgrounds;
(b) Object-wise evaluation with unseen objects; (c) Evaluation
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Fig. 17. Synthetic dataset detection results. (A) Image-wise evaluation in unseen backgrounds. (B) Object-wise evaluation with unseen objects. (C) Multi-object
evaluation in cluttered scenes.

of Gaussian representation; (d) Multi-object evaluation in
cluttered scenes.

(a) Image-wise Evaluation in Unseen Backgrounds: For
transparent objects, changes in the background can greatly
affect their visual features and may result in recognition errors
and grasping failures. To evaluate the performance of TGCNN,
we select 6 objects for training and then test the detection
accuracy on unseen backgrounds. The training set contains
4,000 images and the testing set contains 1,000 images with
different backgrounds from the training dataset. Although the
proposed synthetic data rendering scheme can generate a large
number of transparent object data easily, we hope that the
network can learn with not too much data.

As a result, TGCNN successfully detects a total of 942
objects within the test set, with an accuracy of 94.2%. The re-
sults are compared with some currently well-known and open-
source algorithms, as shown in Table II. Accuracy (Gaussian-
Mask, %) in Table II means we use the Gaussian representation
of the label, and accuracy (Binary, %) means we use the binary
representation of the label. Fig. 17(A) shows the detection
results of each algorithm, indicating that our algorithm has
better performance in unseen backgrounds.

TABLE II
DETECTION RESULTS IN UNSEEN BACKGROUNDS

Algorithm Accuracy
(Gaussian-Mask) Accuracy (Binary)

GGCNN [37] 67.2% 27.2%
Redmon [46] 59.3% 42.5%

GI-NNET [47] 89.3% 25.1%
Ours 94.2% 25.3%

(b) Object-wise Evaluation with Unseen Object: Besides
the good performance under new backgrounds, TGCNN can
also achieve grasping position detection for unseen objects. To
test this, we use two objects from the dataset as the training set
and the remaining four objects as the testing set. Furthermore,

we also included four objects from the LIT dataset [13]
in the test set to further guarantee the generalization of
the dataset. The training set contains 4,000 images and the
testing set contains 1,000 images with unseen objects but
the same backgrounds as the training set. As can be seen
from Table III, TGCNN outperforms other algorithms in the
detection accuracy of unseen objects. Fig. 17(B) shows the
detection results of TGCNN and other algorithms.

TABLE III
DETECTION RESULTS WITH UNSEEN OBJECTS

Algorithm Accuracy
(Gaussian-Mask) Accuracy (Binary)

GGCNN [37] 83.8% 44.2%
Redmon [46] 48.6% 30.1%

GI-NNET [47] 96.1% 61.2%
Ours 99.2% 70.9%

(c) Evaluation of Gaussian Representation: During the
experiments, we found that the utilization of Gaussian repre-
sentation in the annotation plays a key role in improving the
detection accuracy, either for TGCNN or other algorithms.
The grasping position detection results of each algorithm
using Gaussian-Mask and binary representations are listed
in two columns as shown in Table II and III. As can be
observed, by introducing Gaussian representation, the accuracy
of all algorithms is greatly improved compared to binary
representation. With binary representation, our algorithm does
not always perform the best, because TGCNN is sensitive to
the boundary, while other algorithms are not. It can be seen
from Fig. 18 that TGCNN with binary representation locates
the grasping center at the edge of the object, resulting in an
unsatisfactory initial tactile detection position. However, with
Gaussian representation, the grasping position is guided to
the center, allowing tactile calibration to get a better initial
position.

(d) Multi-object Evaluation in Cluttered Scenes: Besides
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Fig. 18. Detection comparison between Gaussian and binary representations.

predicting the optimal grasping of unseen objects, the robust-
ness of TGCNN is also reflected in the ability to predict the
grasping of multiple objects in cluttered scenes. In the exper-
iment, the training set contains 4,000 images with a single
object, and another 1,000 images with multiple objects in the
clutter are used for testing. In each test, we randomly change
the object type, object position, camera position, and scene
background in the scene (the scene backgrounds appeared in
the training set). The comparison of different algorithms is
shown in Fig. 17(C). It can be seen that although TGCNN is
only trained on a dataset with a single object, it can effectively
predict the grasping position of multiple objects with better
performance than other algorithms.

B. Exp. 2: Grasping Position Detection in Different Back-
grounds

To verify the grasping position detection performance of
TGCNN in real scenes, we select 12 backgrounds with dif-
ferent features, including 6 colored backgrounds, 4 patterned
backgrounds, and 2 scenic backgrounds, as shown in the first
row in Fig. 19. The 6 objects in SimTrans12K are used for
experiments. 4,000 synthetic data of two transparent objects
are selected as the training set, 110 real data of 6 transparent
objects as the test set which contains about 600 labels, and
GOD is used to quantify the detection performance. The
performance comparison of GGCNN, Redmon, GI-NNET, and
TGCNN trained under the same dataset are shown in Fig. 19
and Table IV. The results reveal that all networks have good
detection performance under a solid colored background (see
Fig. 19(A)). While in the patterned and scenic backgrounds
(see Fig. 19(B)), the GGCNN [37], Redmon [46], and GI-
NNet [47] algorithms produce more noise in the grasping
position, whereas TGCNN still maintains good performance.

TABLE IV
DETECTION RESULTS WITH REAL DATA

Algorithm Accuracy (Different
Backgrounds)

Accuracy (Different
Brightness)

GGCNN [37] 51.8% 70.9%
Redmon [46] 73.2% 73.2%

GI-NNET [47] 50.7% 48.0%
Ours 91.6% 84.0%

Compared with GI-NNET, TGCNN has a larger number
of parameters. Thanks to the application of residual layers
[48] and skip layer connections [49], we can increase the
network depth while preventing the network from overfitting.
In addition, TGCNN is a grasping network specially designed
for jamming grippers, and we make some adjustments and
optimizations in the number of layers and blocks of the
network, so the TGCNN network has better detection results
compared with GI-NNET.

C. Exp. 3: Grasping Position Detection under Different
Brightness

Besides the background, the light condition is also an
important factor affecting the detection accuracy. In this ex-
periment, we test the impact of lightness on transparent object
detection by changing the brightness (from 151 lux to 2,500
lux measured by a Lux Meter). 4,000 synthetic data of two
transparent objects are selected as the training set and 50 real
data of 6 transparent objects at different brightness as the test
set. The detection results of the four networks are shown in
Fig. 20 and Table IV. From the experimental results, we can
see that the detection results of Redmon and TGCNN are
relatively stable, but Redmon has more noise. The GGCNN
and GI-NNET networks have a stable detection effect when
the brightness of the light is in the 199.9-999 lux interval.
When the interval is exceeded the detection results will be
affected, for example, some objects in the detection results
of GGCNN will not be detected, and the detection results of
GI-NNET will have more noise information.

The experimental results show that the proposed method has
good detection performance in real environments of different
backgrounds and lighting conditions even though the network
is trained using only synthetic data. In addition, we also test the
influence of camera height and light position on the detection
accuracy. It shows that when the camera height ranges between
35-120 cm, TGCNN maintains high detection accuracy. And
under relatively uniform light conditions, the light position
does not have an obvious impact on the detection performance.

D. Exp. 4: Grasping and Classification on Planes with Com-
plex Backgrounds

To verify the effectiveness of the proposed transparent
object grasping and classification framework, grasping and
classification experiments are carried out. The selected objects
are the same as in Fig. 10, including an angled wine glass
and a smooth wine glass, a girdled water glass and a normal
water glass, and a medicine bottle with a textured bottom and
a smooth medicine bottle, which have slippery surfaces and
similar shapes, and are difficult to both grasp and classify.

The experimental procedure is shown in Fig. 21. Two back-
grounds are used in the experiment—the pink background,
which is relatively simple, and the moon background, which
has various colors and complex textures. We compare the per-
formance of GGCNN [37], Redmon [46], GI-NNET [47], and
TGCNN. For each algorithm, we choose 3 objects randomly
placed on the table each time and conduct 20 experiments on
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Fig. 19. Comparison of the four algorithms for grasping position detection in different backgrounds: (A) Colored, (B) Patterned, and (C) Scenic backgrounds.

Fig. 20. Comparison of the four algorithms for grasping position detection
in different brightness.

TABLE V
EXPERIMENTAL RESULTS OF TRANSPARENT OBJECT GRASPING AND

CLASSIFICATION

Algorithm Grasping
Success Rate

Classification
Success Rate

No. of Tactile
Calibration

Background Pink Moon Pink Moon Pink Moon

GGCNN [37] 93% 90% 95% 93% 2 4
Redmon [46] 93% 88% 97% 95% 1 4

GI-NNET [47] 87% 75% 95% 93% 3 5
Ours 98% 93% 98% 93% 1 2

each background with a total of 60 grasping experiments on
each background.

The experimental process is divided into three parts: grasp-
ing position detection, tactile calibration, and visual-touch fu-
sion classification. In the grasping position detection stage, the
image is acquired using RealSense D435i, and the transparent
object grasping position and height are output using TGCNN.
After getting to the grasping position, the gripping position
will be adjusted using a tactile calibration algorithm. After
reaching the optimal grasping position, the object will be
classified using the visual-touch fusion classification algorithm
and placed in the target location. Finally, we compare the peak
value of the output of the grasping position detection network
with a preset threshold, repeat the above operation if it is

greater than the threshold, and end the grasping if less than
the threshold.

The experimental results are shown in Table V. The clas-
sification success rate in the table indicates the classification
success rate in the case of successful grasping. In addition,
the number of tactile calibrations indicates the number of
calibrations performed in each experiment in the case of
successful grasping, which reflects the grasping position de-
tection accuracy (the number of calibrations is less when the
accuracy is higher). The experimental results show that all
four networks have good detection performance in the pure
color background, while in complex backgrounds, TGCNN
has a better performance in terms of grasping success rate
and the tactile calibration number. Even in the case of poor
grasping position detection, the tactile calibration algorithm
in the framework still has a certain probability to achieve the
grasping of transparent objects. In addition, we have also com-
pared the detection effects of visual-tactile fusion classification
and visual-only classification in the real experiments, and
obtained results similar to the algorithm introduction section,
with a detection accuracy improvement of 39%.

E. Exp. 5: Transparent Fragment Grasping

Once a transparent object is broken, a large number of
fragments will be produced, which have irregular shapes and
various sizes and are difficult to grasp. To test the effectiveness
of the visual-tactile fusion grasping framework, transparent
fragment grasping experiments are performed, suggesting that
tactile sensing has an important enhancement to the grasping
success rate.

The transparent fragments used in the experiment are shown
in Fig. 22(A), which are some glass fragments with jagged
surfaces, further increasing the difficulty of grasping position
detection. The fragment grasping process omits the classifica-
tion process compared to Exp. 4, but places higher demands
on the grasping process, and the experimental process is shown
in Fig. 22(B)-(H). To test the tactile calibration algorithm,
grasping experiments with and without tactile calibration are
performed. When tactile calibration is disabled, the gripper
will grasp directly, without further adjustment of the grasping
position. We compare the performance of GGCNN [37],
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Fig. 21. Flowchart of visual-tactile fusion based transparent object grasping and classification.

Redmon [46], GI-NNET [47], and TGCNN. Each algorithm
is tested in the yellow, grid, and flower backgrounds, and 20
visual-tactile fusion grasps and 20 direct grasps are performed
in each background.

It can be seen from Table VI that in the yellow background,
the detection accuracy remains high in direct grasping because
the grasping position can be determined more accurately
by a vision in the yellow background compared to grid
and flower backgrounds. When TGCNN is adopted as the
transparent object grasping position detection network, the
tactile calibration method can improve the grasping success
rate by 15%, 50%, and 45% under the yellow, grid, and
flower backgrounds separately and the overall grasping success
rate by 36.7%, showing the feasibility of the framework for
transparent fragment grasping.

TABLE VI
GRASPING SUCCESS RATES WITH AND WITHOUT TACTILE CALIBRATION

Algorithm Tactile Calibration
Grasping Direct Grasping

Background Yellow Grid Flower Yellow Grid Flower

GGCNN [37] 95% 85% 80% 80% 30% 25%
Redmon [46] 95% 75% 80% 65% 15% 20%

GI-NNET [47] 95% 85% 65% 60% 30% 15%
Ours 100% 90% 95% 85% 40% 50%

F. Exp. 6: Grasping in Irregular Scenes

Compared to grasping on a plane, it is more challenging
to grasp transparent objects in irregular scenes such as over-
lapping, stacking, undulating, and sand (see Fig. 23(A)-(D)),
where the grasping position and height are difficult to obtain.
To solve this problem, we add the THS module based on the
previous framework to obtain the height where the object is
located by tactile. As shown in Fig. 23(A)-(E), to verify the
grasping effect of the THS module in irregular scenes, we
conduct experiments on the grasping of transparent objects in
the case of stacking and overlapping, as well as the grasping
of transparent objects in special scenes such as undulating
surfaces, sand, and underwater.

To demonstrate the experimental process, we designed two
representative scenes, the first with stacking and overlapping
problems, the second with undulating areas, reflective areas,
and sand, as shown in Fig. 24 and Fig. 25. We conduct 20
grasping experiments in each scene, and the overall success
rate can reach more than 90%, which shows the feasibility
of the method for grasping transparent objects on irregular
planes. More experimental procedures can be found on the
website https://sites.google.com/view/visual-tactilefusion.

G. Exp. 7: Grasping in Visually Undetectable Scenes

Finally, we test transparent object grasping in highly dy-
namic underwater scenes, where the object becomes visually

https://sites.google.com/view/visual-tactilefusion
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Fig. 22. Transparent fragment grasping experiment based on visual-tactile fusion. (A) Transparent fragments. (B) Get the grasping position and height. (C)
Contact with the object and detect the center of its contour are not in the gripper center. (D) Adjust the position of the gripper. (E) Touch the object again,
whose contour center coincides with the gripper center. (F) (G) Grasp object. (H) Place the object in the specified position.

Fig. 23. Transparent object in complicated scenes: (A) Overlapping, (B) Stacking, (C) Undulating, (D) Sand, (E) Underwater, and (F) Highly dynamic
underwater scenes.

Fig. 24. Transparent object grasping process in stacking and overlapping scenes. (A) Experimental setup. (B) Get the grasping position. (C) Use the THS
module to search objects and contact the first object. (D) Adjust the grasping position with the tactile calibration module and grasp the object. (E) Get the
new grasping position after completing the first object grasping. (F) Use the THS module to search objects and contact the second object. (G) Adjust the
grasping position with the tactile calibration module and grasp the object. (H) Get the new grasping position and grasp the third object.
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Fig. 25. Transparent object grasping process in undulating and sand scenes. (A) Experimental setup. (B) Get the grasping position. (C) Arrive at the first object
position. (D) Use the THS module to obtain the object height. (E) Adjust the grasping position with the tactile calibration module and use the visual-tactile
fusion algorithm to classify the object. (F) Finish the first object grasp. (G) Grasp and classify the second object. (H) Grasp and classify the third object.

Fig. 26. Transparent object grasping in highly dynamic underwater scenes. (A) Transparent object grasping position detection results. (B) (C) (D) (E) Explore
the transparent object within a specific area using tactile perception. (F) Adjust the grasping position after contacting the object. (G) Visual-tactile fusion
classification. (G) Finish grasping.

TABLE VII
EXPERIMENTAL RESULTS FOR GRASPING IN DYNAMIC UNDERWATER

Exploration Step Length 5 cm 10 cm 15 cm

Grasping Success Rate 90% 65% 25%
Average Time Consumption 121s 78s 52s

undetectable, as shown in Fig. 23(F). In this case, the touch-
first grasp strategy is applied, which incorporates the TPE
module. We assume that the object will not be moved by the
water wave. The experimental procedure is shown in Fig. 26.
Through the experiment, we find that the exploration step
length (distance between two exploration positions) of the
gripper has a significant impact on the success rate of grasping,
so we conduct a comparison experiment with exploration step
lengths of 5 cm, 10 cm, and 15 cm, respectively, and 20
experiments are conducted for each step length. The results
are shown in Table VII, where the average time consumed
refers to the time consumed to successfully find the object,

Fig. 27. Some failed grasping trials. (A) Grasping trial for two flat transparent
objects with the same height. (B) The transparent object collides with the
gripper, thus causing the object to slide.

and the failure cases are not counted. From the results, we
can see that the smaller the step size, the higher the success
rate of grasping, but also the more time consumed.

Besides, we compare the grasping experiments in three
environments, i.e., plane, irregular, and visually undetectable
scenes. In each scene, we conduct 20 grasping experiments,
and the average time consumption from the beginning to reach
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the appropriate grasping position is 22s, 32s, and 121s (the
exploration step is 5 cm in a high-dynamic underwater scene)
in three environments, respectively.

H. Failed Trials and Limitations

There are some failed trials in the experiments, as shown in
Fig. 27. The first case is to grasp two close transparent objects
with the same height. It sometimes fails mainly because such
transparent objects have not only the same texture but also
similar height information. The second case is that if the
grasping position detection error is close to the radius of
sensing of the gripper, the edge of the gripper will easily
collide with the transparent object and cause the object to
slide. In this case, the grasping may also fail. However, as
long as the deviation of the detected gripping position from
the actual gripping position do not exceed the radius of the
gripper, almost no slipping and failure will occur.

VII. CONCLUSION

To solve the challenging problem of detecting, grasping,
and classifying transparent objects, a visual-tactile fusion
framework based on the synthetic dataset is proposed in this
paper. First, we use the Blender simulation engine to render
synthetic datasets rather than manually annotated datasets.
Besides, we use Gaussian-Mask instead of the traditional
binarized annotation to make the generation of the grasping
position more accurate. To achieve grasping position detection
for transparent objects, an algorithm named TGCNN is pro-
posed and multiple comparative experiments are conducted,
which show that the algorithm can achieve good detection
under different backgrounds and lighting conditions even when
trained with only synthetic datasets. Considering the grasping
difficulty caused by the limitation of visual detection, we
propose a tactile calibration method combined with the soft
gripper TaTa to improve the grasping success rate by adjusting
the grasping position with tactile information. The method
improves the grasping success rate by 36.7% compared to
vision-only grasping. Furthermore, to solve the classification
problem of transparent objects in complex scenes, a transpar-
ent object classification method based on visual-tactile fusion
is proposed, which improves the accuracy by 39.1% compared
to the vision-only based classification. In addition, to achieve
transparent object grasping in irregular and visually unde-
tectable scenes, we propose the THS and TPE modules, which
can compensate for the problem of transparent object grasping
in the absence of visual information. Extensive experiments are
designed systematically and the results verify the effectiveness
of the proposed framework in various complex scenarios,
including stacking, overlapping, undulating, sand, underwater
scenes, etc. We believe that the proposed framework can also
be applied to object detection in low-visibility environments
such as smoke and murky underwater, where tactile perception
can compensate for the shortcomings of visual detection and
improve classification accuracy by using visual-tactile fusion.
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